Ryan Soklaski
Ryan Soklaski is a technical staff member of Lincoln Laboratory’s Artificial Intelligence Technologies group. There, he researches machine learning techniques that are performed under data-restricted circumstances, and works as a core developer for a lab-internal machine learning library. Prior to joining the laboratory, Ryan earned his PhD in theoretical condensed matter physics at Washington University in St. Louis. His doctoral thesis involved conducting physics simulations on high-performance computing clusters to study the physical mechanisms that drive the glass formation process in metallic liquids. Ryan’s background in education includes working as a lead-instructor for an undergraduate physics course at Washington University, and as a graduate-level teaching assistant. His interests include methods of numerical analysis, developing software in Python, and quantum mechanics.